@tpmjs/tools-time-series-decompose-lite
Decompose time series data into trend, seasonal, and residual components using additive decomposition. Useful for understanding patterns in temporal data like sales, weather, or economic indicators.
Test @tpmjs/tools-time-series-decompose-lite (timeSeriesDecomposeLiteTool) with AI-powered execution
0/2000 characters
Install this tool and use it with the AI SDK
npm install @tpmjs/tools-time-series-decompose-litepnpm add @tpmjs/tools-time-series-decompose-liteyarn add @tpmjs/tools-time-series-decompose-litebun add @tpmjs/tools-time-series-decompose-litedeno add npm:@tpmjs/tools-time-series-decompose-liteimport { timeSeriesDecomposeLiteTool } from '@tpmjs/tools-time-series-decompose-lite';import { generateText } from 'ai';
import { openai } from '@ai-sdk/openai';
import { timeSeriesDecomposeLiteTool } from '@tpmjs/tools-time-series-decompose-lite';
const result = await generateText({
model: openai('gpt-4o'),
tools: { timeSeriesDecomposeLiteTool },
prompt: 'Your prompt here...',
});
console.log(result.text);Available configuration options
dataarrayTime series data points in chronological order
periodnumberSeasonal period (e.g., 12 for monthly data with yearly seasonality, 7 for daily data with weekly patterns)
Schema extracted: 1/1/2026, 8:17:49 AM
Simple time series decomposition into trend, seasonal, and residual components using additive decomposition.
npm install @tpmjs/tools-time-series-decompose-lite
import { timeSeriesDecomposeLiteTool } from '@tpmjs/tools-time-series-decompose-lite'; // Example: Monthly sales data with yearly seasonality const result = await timeSeriesDecomposeLiteTool.execute({ data: [112, 118, 132, 129, 121, 135, 148, 148, 136, 119, 104, 118, 115, 126, 141, 135, 125, 149], period: 12, // 12 months = 1 year }); console.log(result); // { // trend: [...], // Long-term trend // seasonal: [...], // Repeating seasonal pattern // residual: [...], // Random noise // period: 12, // decompositionType: 'additive', // statistics: { // trendStrength: 0.85, // seasonalStrength: 0.72 // } // }
number[] in chronological orderUses classical additive decomposition:
Model: Y(t) = Trend(t) + Seasonal(t) + Residual(t)
MIT
Downloads/month
0
Quality Score