@tpmjs/tools-beta-binomial-update
Perform Bayesian update of a Beta prior distribution given binomial data (successes out of trials). Returns the posterior Beta distribution with mean, mode, variance, and credible interval. Useful for estimating probabilities with prior beliefs.
Test @tpmjs/tools-beta-binomial-update (betaBinomialUpdateTool) with AI-powered execution
0/2000 characters
Install this tool and use it with the AI SDK
npm install @tpmjs/tools-beta-binomial-updatepnpm add @tpmjs/tools-beta-binomial-updateyarn add @tpmjs/tools-beta-binomial-updatebun add @tpmjs/tools-beta-binomial-updatedeno add npm:@tpmjs/tools-beta-binomial-updateimport { betaBinomialUpdateTool } from '@tpmjs/tools-beta-binomial-update';import { generateText } from 'ai';
import { openai } from '@ai-sdk/openai';
import { betaBinomialUpdateTool } from '@tpmjs/tools-beta-binomial-update';
const result = await generateText({
model: openai('gpt-4o'),
tools: { betaBinomialUpdateTool },
prompt: 'Your prompt here...',
});
console.log(result.text);Available configuration options
priorAlphanumberPrior alpha parameter (represents prior successes + 1)
priorBetanumberPrior beta parameter (represents prior failures + 1)
successesnumberNumber of successes observed in the data
trialsnumberTotal number of trials conducted
credibleLevelnumberCredible interval level (default: 0.95 for 95% interval)
Schema extracted: 1/1/2026, 8:18:34 AM
Bayesian beta-binomial conjugate posterior update for estimating probabilities from data with prior beliefs.
npm install @tpmjs/tools-beta-binomial-update
import { betaBinomialUpdateTool } from '@tpmjs/tools-beta-binomial-update'; // Example: Estimate conversion rate with prior belief // Prior: Beta(2, 2) = uniform-ish prior slightly favoring 0.5 // Data: 15 conversions out of 100 trials const result = await betaBinomialUpdateTool.execute({ priorAlpha: 2, priorBeta: 2, successes: 15, trials: 100, credibleLevel: 0.95, // 95% credible interval }); console.log(result); // { // posteriorAlpha: 17, // 2 + 15 // posteriorBeta: 87, // 2 + (100 - 15) // posteriorMean: 0.163, // Best estimate // posteriorMode: 0.157, // Most likely value // posteriorVariance: 0.001, // credibleInterval: { // lower: 0.098, // upper: 0.239, // level: 0.95 // }, // statistics: { // effectiveSampleSize: 4, // priorMean: 0.5, // dataLikelihood: 0.15 // } // }
Uses conjugate Beta-Binomial model:
Prior: θ ~ Beta(α, β)
Likelihood: X ~ Binomial(n, θ)
Posterior: θ|X ~ Beta(α + k, β + (n - k))
Where:
The Beta distribution is conjugate to the Binomial, making the update simple and exact.
Beta(1, 1) = Uniform[0, 1]Beta(0.5, 0.5) = Uninformative invariant priorBeta(2, 2) = Slight preference for θ = 0.5Beta(20, 20) = Strong belief in θ = 0.5The credible interval is the Bayesian analog of a confidence interval. A 95% credible interval means "there is a 95% probability that θ lies in this interval given the data."
MIT
Downloads/month
0
Quality Score